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Abstract In this paper we describe a probabilistic framework for describing dynam-
ical systems. The approach is inspired by quantum dynamical expectation dynamics.
Specifically, an abstract evolution operator corresponding to the Hamiltonian in quan-
tum dynamics is constructed. The evolution of this operator defining PDE’s solution
is isomorphic to the functional structure of the wave function as long as its initial
form permits. This operator enables us to use one of the most important probabilistic
concepts, namely expectations. The expectation dynamics are governed by equations
which are constructed via commutator algebra. Based on inspiration from quantum
dynamics, we have used both the independent variables and the symmetric forms of
their derivatives. For construction of the expectation dynamics, the algebraic inde-
pendent variable operators which multiply their operands by the corresponding inde-
pendent variable suffice. In our descriptions, we remain at the conceptual level in
a self-consistent manner. The phenomenological implications and the tremendous
potential of this approach for scientific discovery and advancement is described in the
companion to this paper.
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1 Introduction

Dynamical systems are commonly described by ordinary differential equations
(ODEs) where the dynamics of the system is characterized by the evolution of variables
that represent position and momentum. While this representation is a tremendously
useful tool in many domains, it is well known that it is insufficient in the context of
the quantum dynamical descriptions which are necessary to characterize dynamics
of atomic particles such as the electron, proton and others. Instead, the well known
Schrödinger equation, which is a parabolic partial differential equation is used to char-
acterize such systems. The solution of this equation is called the wave function and
it does not directly define the measurable values of position or momenta. Instead,
its complex modulus square defines the probability amplitude which can be used to
evaluate the expectation values of operators corresponding to the observervable enti-
ties like positions and momenta. The dynamical equations define the evolution of the
wave function or the probability density in time. In order to find the evolutions of the
expectation values, we use the inner product of the wave function with the image of
the wave function under the considered operator’s action. This approach allows us
to construct ordinary differential equations for these expectation values. While this
issue has been well studied in earlier research, we believe that a summarizing review
is warranted. We devote one of the sections to this very topic.

The expectation values represented by the quantum dynamical equations have sim-
ilarities to the system’s classical counterpart. However, one fundamental difference
is the number of unknowns. In the case of quantum dynamical equations, the num-
ber of unknowns is denumerably infinite whereas the classical equations contain as
many unknown temporal functions as the system’s degrees of freedom. Usually, the
unknowns in the classical case are positions and momenta. Accordingly, their quantum
counterparts are expectation values of the position and momenta operators. It is impor-
tant to note that, due to the probabilistic nature of quantum dynamics, the expectation
value of the power of an operator is not equal to the same power of the expectation
value of the considered operators. This discrepancy is related to the degree of sharp-
ness in the localization of the wave function in space. We refer to this discrepancy
as “mathematical fluctuations”. They are the essential reasons for the infinite number
of unknowns in the quantum expectation value dynamics. We also devote one of the
subsequent sections to the discussion of this topic.

This paper is fundamentally based on the the similarities and discrepancies between
classical and quantum expectation dynamics. The details will be presented after the
abovementioned sections. The potential phenomenological implications of this work
will be described in a separate but companion paper to the this one. This companion
also contains discussion specifically about dynamical systems based causal modeling
frameworks as they are currently used in neuroscience and human functional neuro-
imaging. While we are thrilled about the cross disciplinary pollination of ideas and
potential for discovery, we leave such discussions solely to the companion paper.
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The paper is organized as follows. The Sects. 2 and 3 summarize the essential fea-
tures of equations characterizing classical and quantum expectation dynamics. The
Sect. 4 introduces previous research on the concept of mathematical fluctuations. The
Sect. 5 focuses on the basis operators and commutators while the Sect. 6 expands upon
approaches for finding the appropriate Hamiltonian structures. Building on this struc-
ture, the Sect. 7 proceeds to formulate the generalized expectation dynamics. In this
section, approaches for constructing a simple and efficient Hamiltonian are described.
In the Sect. 8, the solution of the evolution equation based on the abovementioned
Hamiltonian is formulated. The Sect. 9 summarizes the steps for constructing the
probabilistic framework for dynamical systems. This section which is a culmination
of all the subsequent sections leads up to an extremely important linearization proce-
dure. The Sect. 10 finalizes the paper with concluding remarks. This paper is designed
to be comprehensive in a canonical fashion, therefore we focus on formulating an
expansive mathematical framework. In future research, numerical implementations
that are relevant to specific fields of science will be described.

2 Dynamical systems

A dynamical system’s state is mathematically defined by a set of real numbers. These
can also be called vectors since these values can represent a point in an appropri-
ate Cartesian space called either “state space” or “phase space”, for a specified time
instant denoted by t . Hence the state vector which can be denoted by x(t) is composed
of temporal elements denoted by x1(t), . . . , xn(t). The time variable generally takes
nonnegative real values although it is sometimes more efficient to consider all real
values. While it is possible to use integer domains for t as commonly used in cascaded
systems, in this paper we will focus on the continuous cases. The dynamical system
is essentially defined by providing a rule for time evolution of its state. This rule is
generally differential, which means that the differential change in the state vector is
given for any time instant t . This can be done by defining an ordinary differential equa-
tion with appropriate initial conditions to get uniqueness. Thus, the determination of
the considered dynamical system’s evolution requires the solution of the ODE initial
value problem mentioned above. In other words, the evolution necessitates integra-
tion which may not be accomplished analytically for all possible cases. Therefore the
governing equations for a dynamical system [1,2] can be written as follows

ẋ(t) = f(x(t)), t ∈ [ 0,∞) , x(0) = a (1)

x(t) ≡ [ x1(t) . . . xn(t) ]T (2)

where dot stands for the temporal differentiation and the set of ODE is assumed to
be autonomous without any loss of generality since nonautonomous structure can be
removed by adding a new temporal function equal to just t . The initial value vector, a
and f’s functional structure are given.

The solution of the initial value problem given through (1) may not be analytically
possible depending on the functional dependence of f(x) on the state vector. While
the linear or affine structures allow us to get analytical solutions, the other structures
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which are nonlinear may lead to analytic solutions only in a limited number of cases.
While this is an important issue, it is a technical one, therefore we do not elaborate on
its implications here.

Beyond the feasibility of analytic solution, the other important issue is the causal-
ity. This means that a so-called trajectory or orbit, completely defined by the temporal
variation of the state vector, never bifurcates. This property can be provided only by
restricting the functional structure of f appropriately. Otherwise the system may have
more than one state at some time instances for a given single initialization. This issue
is also kept outside the content of the paper.

3 Fluctuation free quantum expectation dynamics

Consider a quantum system [3,4] whose Hamiltonian, which is a second order linear
partial differential operator in spatial coordinate(s), is denoted by ̂H(t). Its dynamics
is governed by the following equation

i h̄
∂ψ

∂t
= ̂H(t)ψ (3)

where h̄ stands for the reduced Planck constant while ψ denotes the wave function
depending on both time (t) and position (x). The Hamiltonian is composed of terms
including the position and momentum operator(s) in addition to certain temporally
varying entities. In this formulation, we have shown only the temporal dependence
because of its importance in the dynamical characterization.

The wave function is a complex valued entity and its complex modulus square is the
probability density of the quantum system under consideration. The wave function can
be considered as lying in an Hilbert space where the inner product of two functions is
defined as the multidimensional integral of the product of one function with the other’
s complex conjugate. This inner product induces a norm definition which corresponds
to the integral of the complex modulus square of the target function to norm. The
integration domain is a matter of modelling however appropriate boundary conditions
must be imposed to provide self-adjointness or in other words Hermiticity. Regarding
these facts, one can say that the norm of the wave function can be taken 1 for all time
instances as can be proven from the equation in (3) and its complex conjugate.

The norm preserving property of the wave function enables us to give a probabilis-
tic nature to it. This also facilitates the expected value (or expectation) definition of
an operator. The expectation of an operator, say ̂O , is defined as the inner product of
the wave function with its image under the considered operator and therefore can be
explicitly given by the following identity

o(t) ≡ 〈

̂O
〉

(t) ≡ (

ψ(t), ̂Oψ(t)
)

(4)

where we have not explicitly shown the dependence of the wave function on spatial
variables since they are internal agents of the inner product as being the dummy inte-
gration variables. The expectation should depend on time due to the temporal nature
of the wave function and it is explicitly shown after the left and right angle symbols.

123



854 J Math Chem (2012) 50:850–869

If we now temporally differentiate both sides of (4), after assuming the time inde-
pendency of the operator ̂O , we can write

ȯ(t) =
(

∂ψ(t)

∂t
, ̂Oψ(t)

)

+
(

ψ(t), ̂O
∂ψ(t)

∂t

)

=
(

− i

h̄
̂H(t)ψ(t), ̂Oψ(t)

)

+
(

ψ(t), ̂O

(

− i

h̄
̂H(t)

)

ψ(t)

)

=
(

ψ(t),

{

i

h̄

[

̂H(t)̂O − ̂O ̂H(t)
]

}

ψ(t)

)

(5)

where we have used (3) and the Hermiticity of the Hamiltonian operator.
In most of the quantum models, the Hamiltonian of the system is time invariant as

long as it is isolated from its environment. In other words, time dependence is assumed
to be coming from the external influences which generally appear in the potential or
potential-like (for example vector field reflecting terms under the strong magnetic
fields) parts of the Hamiltonian. This urges us to write the following structure for the
Hamiltonian with minimal loss of generality

̂H(t) ≡ ̂Hiso +
m

∑

j=1

h j (t)̂Hj (6)

where h j (t)s are given real valued temporal functions while the ̂Hj s are Hermitian
operators depending on the position and momentum operator(s) wheras ̂Hiso is the
Hamiltonian of the system when it is isolated from its environment. We can now use
(6) in (5) to get

ȯ(t) =
(

ψ(t),

{

i

h̄

[

̂Hiso ̂O − ̂O ̂Hiso
]

}

ψ(t)

)

+
m

∑

j=1

h j (t)

(

ψ(t),

{

i

h̄

[

̂Hj ̂O − ̂O ̂Hj
]

}

ψ(t)

)

(7)

which contains m + 1 new time invariant operators at its right hand side inside the
pairs of curly braces. This means that the temporal derivative of a given operator’s
expectation is a linear combination of the expectations for the commutators (or Pois-
son brackets in quantum mechanical terminology) of the system’s Hamiltonian with
the spatial components of the same Hamiltonian. Since the latter expectations may
not also be explicitly known unless some specific conditions are fulfilled, we need
to derive differential equations for the expectations of these new operators by tracing
the route we have followed to obtain (7). This procedure results in the birth of new
operators and as we proceed the expectations populate towards infinity unless some
closedness conditions amongst these operators exist. We do not get into the technical
details here. What we can say as a conclusion is that an infinite set of ODEs governs
the dynamics of the expectations. The key agents in the construction of these equations
are the choice of the operator to start the procedure and the Hamiltonian (therefore the
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model) structure. One starting choice may end up at a finite set of operators while the
other may require infinite number of operators. This is a commutator algebraic issue
and we will not get into its details.

Before going further, we need to focus a little bit on the structures of the operators
̂Hiso and ̂Hj s. As we mentioned above, they are generally depending on the position
and momentum operators. However their dependence on these operators plays impor-
tant roles for the structuring of the expectation dynamical equations. To show this,
we may consider the case where the system does not interact with its environment. In
other words all ̂Hj s vanish. As another simplicity we may consider the system as a one
dimensional model whose spatial variable is denoted by x . In this case the position
(̂x) and momentum ( p̂) operators are defined in terms of the spatial variables for an
arbitrary function f (x, t) differentiable at least once in t

x̂ f (x, t) ≡ x f (x, t), p̂ f (x, t) ≡ −i h̄
∂ f (x, t)

∂x
(8)

where t , time, takes nonnegative values while the spatial variable is assumed to get
real values. The operator x̂ is an algebraic multiplication operator which multiples
its operand by the independent variable while the momentum operator p̂ spatially
differentiates its operand and then multiplies the result by −i h̄. Both of these opera-
tors have continuous spectra and therefore have distributional or generalized function
type eigenfunctions. Our system is chosen as a single particle under the influence of
a potential function denoted by V (x) for sufficient simplicity and generality. We can
write

̂H ≡ ̂Hiso ≡ − 1

2μ
p̂2 + V (̂x) (9)

where μ stands for the mass parameter of the particle under consideration. It is not
hard to see that the following commutation rule holds

̂H x̂ − x̂ ̂H = −i
h̄

μ
p̂ (10)

which urges us to take ̂O as x̂ and to obtain

ȯ(t) ≡ ξ̇ (t) = 1

μ
π(t), π(t) ≡ 〈 p̂〉 (t), ξ(t) ≡ 〈̂x〉 (t). (11)

If we would take ̂O as p̂ then we would get

ȯ(t) ≡ π̇(t) = − 〈

V ′ (̂x)
〉

(12)

Equations (11) and (12) becomes sufficient to solve both ξ(t) and π(t)without leaving
any uncertainty when the potential function V (x) is a polynomial with a degree less
than three since its expectation becomes a first degree polynomial in ξ(t). Otherwise
these two equations are not sufficient to get a solution since the expectation of the
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operator V ′ (̂x) becomes no longer expressable in terms of only the operator x̂ . In
order to compensate for this one needs to construct more ODEs and this procedure
may never end.

The at-most-second-degree polynomial structure in the potential function V (x) is
a great limitation to get equations to be simultanously solved for ξ(t) and π(t) and
is provided by only harmonic oscillator or free particle. In this case the following
equality remains valid

〈

V ′ (̂x)
〉 = V ′ (〈̂x〉) (13)

Even though its validity breaks down for other V functions we may nevertheless have
an asymptotic relation as long as the wave function is sufficiently narrowly spreaded
(if it becomes an infinite jump like Dirac’s delta function then relation becomes exact).

lim
ψ→δD

〈

V ′ (̂x)
〉 = V ′ (〈̂x〉) 	⇒ 〈

V ′ (̂x)
〉 ≈ V ′ (〈̂x〉) (14)

All fluctuations in the operator expectations vanish when the wave function becomes
similar to the Dirac delta function. In this case the quantum mechanics approaches
classical mechanics. Therefore by assuming that the wave function is sufficiently
sharply localized, we can approximate the expectation of V ′ (̂x) by V ′ (〈̂x〉). This
approximation corresponds to the application of the Fluctuationless Theorem [5–12]
to the one dimensional matrix representation case and the error diminishes as the first
basis function there tends to become Dirac delta function.

Now we can get the following ODEs for abovementioned ξ(t) and π(t) functions
which are the expectations of the position and momentum operators respectively

ξ̇ (t) = 1

μ
π(t), π̇(t) = −V ′ (ξ(t)) (15)

which are two ODEs on two unknowns. These are obtained in fact by assuming all
of the expectations of any type product of the position and momentum operators is
equal to the same product of not the operators but their expectations. These entities
deviate from each others and the deviations are defined as fluctuations. Hence we
assume all fluctuations are vanishing. Hence we call these equations “Fluctuation
Free Expectation Dynamics” of the considered system.

If the fluctuations are not ignored then we need to define some other operators and
construct ODEs for their expectations. This procedure results in an infinite set of linear
ODEs unless the Hamiltonian has a very specific structure. This issue and the relevant
details of Mathematical Fluctuation Theory will be focused on in the coming sections.

4 Mathematical fluctuation theory

Let us consider an Hilbert space (H) of univariate functions which are analytic in a
certain region of the complex plane of their arguments such that the analyticity region

123



J Math Chem (2012) 50:850–869 857

involves the integration interval of the inner product for that space. If we take the basis
set ϒ spanning H and its N -term finite restriction ϒN defined as follows

ϒ ≡ {

υ j (x)
}∞

j=1 , ϒN ≡ {

υ j (x)
}N

j=1 (16)

then we can use the symbol HN to denote the subspace spanned by ϒN . Any linear
operator from H to H has a unique restriction over HN (it maps from HN to HN ).
Now we can consider the mapping from linear operators (from H to H) to matrix rep-
resentations over the restricted basis set υ1(x), . . . , υN (x) and denote it by MN

(

̂O
)

for the mapping from the operator ̂O to its restricted matrix representation. We can
write the following equality for any two different linear operators denoted by ̂O1 and
̂O2 mapping from H to H

MN
(

̂O1 ̂O2
) ≡ MN

(

̂O1 ̂P(N )̂O2

)

+ MN

(

̂O1

[

̂I − ̂P(N )
]

̂O2

)

≡ MN
(

̂O1
)

MN
(

̂O2
) + MN

(

̂O1

[

̂I − ̂P(N )
]

̂O2

)

(17)

where the operator ̂P(N ) projects to the subspace spanned by the restricted basis set
ϒN . As can be immediately noticed, the operator

[

̂I − ̂P(N )
]

approaches the zero
operator as N goes to infinity. The complement of the space spanned by the finite set
{υ1(x), . . . , υN (x)} to the entire Hilbert space, H⊥

N is spanned by the functions which
become more oscillatory as N grows. Therefore any function in this complementary
space fluctuates more rapidly as N increases. Hence we call the operator

[

̂I − ̂P(N )
]

“Fluctuation Operator”, and parallel to this, we call any expectation containing opera-
tors where the fluctuation operator appears once or more than once “Fluctuation Term”.
Hence the last term in (17) stands for a fluctation term. If we ignore all fluctuation
terms in a formula then we call what we get “Fluctuationlessness Approximation” or
“Fluctuation Free Version” of the formula. Thus, the fluctuation free version of (17)
can be written as follows

MN
(

̂O1 ̂O2
) ≈ MN

(

̂O1
)

MN
(

̂O2
)

(18)

The consecutive utilization of this approximation allows us to write

MN
(

x̂m) ≈ MN (x)m ≡ Xm
N , m = 1, 2, . . . (19)

where XN stands for the matrix representation of the independent variable as noticed.
This implies

MN ( f (̂x)) ≈ f (MN (̂x)) = f (XN ) (20)

where the function f is assumed to be analytic in a complex region of its argument,
including the origin. Here we have dealt with the matrix representation of the algebraic
function multiplication operator, ̂f , which multiplies its operand by the function f (x).
We called the matrix XN “Universal Matrix” since it is the matrix representation of
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the independent variable and therefore does not depend on any functional structure in
contrast to function multiplication operator.

The formula in (20) is the mathematical expression of the “Fluctuationlessness
Theorem”[6] conjectured and proven by the first author. It states that the matrix rep-
resentation of a function multiplication operator is equal to the image of the universal
matrix over the subspace spanned by the first N number of basis functions for the
entire Hilbert space when all fluctuations are ignored. The theorem is valid as long as
some level of analyticity exist in the function under consideration. The multivariate
counterpart of this theorem is also valid as it is shown by the first author.

We find this summary material sufficient for our purposes here.

5 Basis operators and commutators

The Taylor expansion of a univariate function is an infinite linear combination of
powers like (x −a)k where k is a nonnegative integer while x and a stand for the inde-
pendent variable and the expansion point. Hence these powers can be considered as the
basis set of the function space under consideration. Since we deal with the operators
in the quantum expectation dynamics, it is better to consider some basis operators.
Let us go back to the section of fluctuation free quantum expectation dynamics. There
we had assumed that the system’s Hamiltonian can be represented in terms of con-
tinuous functions of the position and momentum operators which are corresponding
somehow to the abovementioned independent variable. This and the brief discussion
above bring the idea of using the products of powers of these operators as the basis
operators to represent an arbitrary operator assumed to be continuously depending on
these operators. We need to start with the zeroth powers first as we do in the case of
Taylor series. The only operator which contains the zeroth powers of the position and
momentum operators is the unit operator, ̂I . This corresponds to the constant term of
the Taylor series where the basis function is the unit constant function.

Now, to proceed, we can deal with the powers of the operators (̂x−âI ) and ( p̂−âI ).
Choosing a nonzero takes us to the Taylor series while the zero a value corresponds
to Maclaurin series. We will prefer to take a = 0 for simplicity here. Thus, the first
degree linearly independent basis operators can be x̂ and p̂. We have now three basis
operators and obviously the commutators of the x̂ and p̂ with ̂I vanish while the
following equality can be obtained to show the mutual non commutativity of x̂ and p̂

x̂ p̂ − p̂x̂ = i h̄̂I (21)

To construct the second degree basis operators we have four chances: x̂2, x̂ p̂, p̂x̂
and p̂2. However, the second and third operators are not Hermitian despite the Hermi-
ticity of the position and momentum operators over the space of functions vanishing
at the ends of the interval (generally we deal with to use entire real axis for the domain
of x unless some geometrical enforcements do not show up). Hence, instead of them,
their symmetrized linear combinations can be considered as the basis operators. There
are two possibilities to this end, (̂x p̂ + p̂x̂) and i (̂x p̂ − p̂x̂). Only the first possibility
can be used since the second one is proportional to the unit operator and therefore
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its degree is zero not two as appeared. All these mean that the possible Hermitian
second degree basis operators can be chosen as x̂2, 1

2 (̂x p̂ + p̂x̂) and p̂2. These are
the symmetric and nonreducible (which can not be represented as a linear combination
of the lower degree terms only) second degree operators.

The above analysis can be generalized to higher degrees without any remarkable
difficulty. This procedure results in the following basis operators which are Hermitian
and irreducible compositions of binary products

ô(bas)
n, j ≡ 1

2

(

x̂ j−1 p̂n+1− j + p̂n+1− j x̂ j−1
)

, n = 0, 1, . . . j = 1, 2, . . . , n + 1

(22)

One can of course ask what happens to products of more than two factors. It is not hard
to show that they can be expressed as linear combinations of binary products whose
degree are equal to or less than their own degrees. We call the operators in (22) “Basis
Operators”. The commutator of any two basis operators can be expressed in terms of
the same basis operators. In other words

ô(bas)
n1, j1

ô(bas)
n2, j2

− ô(bas)
n2, j2

ô(bas)
n1, j1

=
∞
∑

n3=0

n3+1
∑

j3=1

cn1, j1;n2, j2;n3, j3 ô(bas)
n3, j3

(23)

where cs are the elements of an infinite three way array (infinite in its each way, we
consider a single direction ordering over each couple of (n, j)s). Although the word
“tensor” is widely used for these type arrays we do not prefer its utilization since “ten-
sor” in continuum mechanics have some physical features which need not to be existing
in multilinear arrays. We do not intend to get into further details at this moment even
though the elements of c can be uniquely determined through a commutator algebraic
procedure.

6 Mathematical extensions to Hamiltonian

The previously mentioned Hamiltonian operator ̂H(t) has some restrictive properties.
One of them is the symmetry or Hermiticity and provides the real valuedness of the
Hamiltonian expectation which is desired in quantum mechanics due to its relation to
the total energy of the system. We do not intend to remove this restriction since our
purpose is to deal with real valued items for the moment. The second property is a sec-
ond degree polynomial structure in momentum. This comes from the physical nature
of the quantum mechanics where the total energy of an isolated system is conserved
during its evolution. This physical constraint can be removed since our purpose is not
to construct a quantum dynamics but probabilistic foundation where there is no appar-
ent need for a rule similar to energy conservation. On the other hand, there are some
other probabilistic evolutionary partial differential equations like Louville equations
where the order in momentum is one. Our purpose here is to get the mathematical
structure as general as we can.
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The other restriction we have aforementioned is the continuity of the Hamiltonian in
momentum and position. The position dependence is generally controlled by potential
or potential like structures and there may be some potential cases where discontinuity
with respect to position may appear. However, even those cases can be approximated
by some structures continuos in position. The removal of the second degree poly-
nomiality in momentum may bring some unexpected discontinuties in momentum.
Even in those cases asymptotically discontinuous continuities can handle the situa-
tion. Therefore we can propose the following structure for the system Hamiltonian
operator

̂H(t) =
∞
∑

n=0

n+1
∑

j=1

Hn, j (t )̂o
(bas)
n, j , n = 0, 1, . . . j = 1, 2, . . . , n + 1 (24)

where the temporally varying entities, Hn, j (t)s are given real functions. This
Hamiltonian may not correspond to any physically existing system. Its an hypothet-
ical structure or in other words it is a mathematical extension to quantum dynamical
Hamiltonian. Since this structure is an infinite linear combination in basis operators
it is the most general dynamically changeable Hamiltonian structure in the space of
Hermitian linear operators derived from position and momentum operators.

The above definition in (24) enables us to write

̂H(t )̂o(bas)
n1, j1

− ô(bas)
n1, j1

̂H(t) =
∞
∑

n2=0

n2+1
∑

j2=1

Hn2, j2(t)
(

ô(bas)
n2, j2

ô(bas)
n1, j1

− ô(bas)
n1, j1

ô(bas)
n2, j2

)

=
∞
∑

n2=0

n2+1
∑

j2=1

∞
∑

n3=0

n3+1
∑

j3=1

Hn2, j2(t)cn1, j1;n2, j2;n3, j3 ô(bas)
n3, j3

=
∞
∑

n2=0

n2+1
∑

j2=1

Cn1, j1,n2, j2(t )̂o
(bas)
n2, j2

n1 = 0, 1, . . . j1 = 1, 2, . . . , n1 + 1 (25)

where we have used (23) and the entities defined as

Cn1, j1,n2, j2(t) =
∞
∑

n3=0

n3+1
∑

j3=1

Hn3, j3(t)cn1, j1;n3, j3;n2, j2

n1, n2 = 0, 1, . . . j1 = 1, 2, . . . , n1 + 1 j2 = 1, 2, . . . , n2 + 1. (26)

The four index array Cn1, j1,n2, j2 can be converted to an infinite matrix by reordering
the indices n1, j1 and n2, j2 separately in single directions. We may call it “Folded
Matrix” or shortly “Folmat”. Its unfolded structure in matrix format will be denoted
by C(t) from now on. We can now define

ô(bas) ≡
[

o(bas)
0,1 . . . o(bas)

n, j . . .
]T

(27)
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which permits us to arrive at the following very important result.

̂H(t )̂o(bas) − ô(bas)
̂H(t) = C(t )̂o(bas) (28)

We will call C(t) “The Commutation with the Hamiltonian Matrix” for basis operator
set.

7 Generalized expectation dynamics

As can be noticed easily we can write

d
〈

o(bas)
〉

(t)

dt
= i

h̄

〈

̂H(t )̂o(bas) − ô(bas)
̂H(t)

〉

(t) = i

h̄
C(t)

〈

ô(bas)
〉

(t) (29)

If we define

o(bas,exp)(t) ≡
〈

o(bas)
〉

(t) (30)

then we can rewrite (29) as follows

ȯ(bas,exp)(t) = i

h̄
C(t )̂o(bas,exp)(t) (31)

which is an infinite set of linear ODEs with a variant coefficient matrix.
The linearity of the infinite ODE set comes from the fact that the infinite matrix C(t)

does not depend on expectations. However it depends on Hamiltonian and to reveal its
explicit expressions is not an easy task. Nevertheless the downward determination of
its rows starts with a trivially easy step and gradually increases in complication. For
this reason we do not attempt to find all rows at this moment. Instead we are going
to try to determine the first two rows. Let us start with the first row. We can write the
following equation from (26)

C0,1,n2, j2(t) =
∞
∑

n3=0

n3+1
∑

j3=1

Hn3, j3(t)c0,1;n3, j3;n2, j2

n2 = 0, 1, . . . j2 = 1, 2, . . . , n2 + 1. (32)

which urges us to go back to (23) and write

ô(bas)
0,1 ô(bas)

n2, j2
− ô(bas)

n2, j2
ô(bas)

0,1 =
∞
∑

n3=0

n3+1
∑

j3=1

c0,1;n2, j2;n3, j3 ô(bas)
n3, j3

(33)

where the left hand side always vanishes for all (n2, j2) couples since ô(bas)
0,1 is unit

operator. This implies c0,1;n2, j2;n3, j3 = 0 since it is the coefficient in an infinite linear
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combination of linearly independent (basis) functions. So we get C0,1,n2, j2(t) ≡ 0
and therefore

eT
1 C = 0T (34)

where eT
j stands for the Cartesian unit vector whose nonzero element takes the value

of 1 and is located in the j th position. This result, which reveals the fact that first row
vanishes, leads us to the following ODE

˙
o(bas,exp)

0,1 (t) = 0, o(bas,exp)
0,1 (0) = 1 (35)

where the imposed initial condition is due to the normalized nature of the wave func-
tion. Hence we get o(bas,exp)

0,1 (t) = 1 which is an expected result.
We can start with the following identity for determining the second row of C(t)

x̂ p̂n+1− j ≡ p̂n+1− j x̂ + i(n + 1 − j)h̄ p̂n− j ,

n = 0, 1, . . . ; j = 1, 2, . . . , n + 1 (36)

whose validity can be shown by proving the identicality of the actions of its both sides
on an arbitrary sufficiently differentiable function. This leads us to get the following
result after some intermediate operator algebraic manipulations

x̂ ô(bas)
n, j − ô(bas)

n, j x̂ = i(n + 1 − j)h̄ô(bas)
n−1, j , n = 0, 1, . . . ; j = 1, 2, . . . , n + 1 (37)

whose comparison with the form of (23) when n1 = 1 and j1 = 2 reveals the following
equality

c1,2;n2, j2;n3, j3 = i (n3 + 2 − j3) h̄δn3,n2−1δ j3, j2 (38)

which enables us to obtain

C1,2,n2, j2 = i (n2 + 2 − j2) h̄ Hn2+1, j2(t),

n2 = 0, 1, . . . ; j2 = 1, 2, . . . , N2 + 1 (39)

by using (26). This gives all second row elements of the matrix C(t). Therefore the
second ODE of the expectation dynamics can be written as follows

ȯ(bas,exp)
1,2 (t) =

∞
∑

n=0

n+1
∑

j=1

i

h̄
C1,2,n, j o

(bas,exp)
n, j (t)

= −
∞
∑

n=0

n+1
∑

j=1

(n + 2 − j) Hn+1, j (t)o
(bas,exp)
n, j (t) (40)
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If the momentum operator does not show up anywhere at the right hand side then only
the expectations of the powers of the position operator appear in the ODE. Then the
utilization of the fluctuation free representations of these terms provide the dependence
of right hand side only on the expectation o(bas,exp)

1,2 (t). Otherwise the momentum oper-
ator’s expectation unavoidably show up. This means the connection to at least a third
and remaining set of expectation equations, which is completely undesirable for our
purpose here since we want to get a single existing target ODE which will be obtained
via fluctuation free representation. Thus we impose the following structure

Hn, j (t) = χn(t)δ j,n, n = 1, 2, . . . (41)

whose employment in (24) shows that the Hamiltonian must have the following form

̂H(t) = a0(t)̂I + 1

2
{a1 (̂x, t) p̂ + p̂a1 (̂x, t)} (42)

where a0(t) can be taken identically zero since it never enters the expectation because
it contains the coefficients of the unit operator vanishing in commutation operations.
This formula produces

i

h̄

[

̂H(t )̂x − x̂ ̂H(t)
] = a1 (̂x, t) (43)

and therefore

ξ̇ (t) ≡ ˙〈̂x〉(t) = 〈a1 (̂x, t)〉 ≈ a1 (〈̂x〉 , t) = a1 (ξ(t), t) (44)

where we have used the fluctuation free representation of the right hand side. This
means that an ODE given by the rightmost equation of (44) has a probabilistic foun-
dation if the Hamiltonian’s a1 function matches the right hand side of this ODE when
the position operator is replaced by ξ(t).

Thus we have shown that a Hamiltonian can be constructed for any single ODE
such that the expectation of the independent variable (position) over its wave function
satisfies that ODE at the fluctuation free expectations limit.

8 Wave equation for probabilistic foundation

The discussions of the previous section urge us to rewrite the probabilistic foundation
Hamiltonian and Wave Equation as follows

̂H(t) = 1

2
{a (̂x, t) p̂ + p̂a (̂x, t)} (45)

∂ψ(x, t)

∂t
= −1

2

{

a (x, t)
∂

∂x
− ∂

∂x
a (x, t)

}

ψ(x, t)

= −a (x, t)
∂ψ(x, t)

∂x
− 1

2

∂a (x, t)

∂x
ψ(x, t) (46)
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In the case where a does not depend on t we can write

y ≡
x

∫

0

dx̄
1

a (x̄)
, ψ(x, t) = 1√

a(x)
ψ̄(y, t) (47)

which leads us to get

∂ψ̄(y, t)

∂t
= −∂ψ̄(y, t)

∂y
(48)

whose solution is f (y − t). The shape of f can be determined by using the initial
form of the changed wave function, ψ̄0(y) and the solution is obtained as

ψ̄(y, t) = ψ̄0(y − t) (49)

This is a wave structure. However it may not be just a simple translational wave unless
a becomes a constant function. It is translational with respect to y but it may have
quite complicated nature with respect to x depending on a. We do not intend to go
beyond this level information.

Evidently, the initial form gains a lot of importance to give probabilistic nature to
the wave function. We may seek some general universal features for these entities.
Then their structures can be chosen and parametrized accordingly.

Since the momentum operator does not show up in the evolutionary ODE of (44),
it becomes a matter of curiosity to get the evolutionary equation for its expectation.
For this purpose we can use the abovementioned Hamiltonian’s commutator with the
momentum operator and get the desired ODE by taking expectation. This gives

π̇(t) ≡ ˙〈 p̂〉 = − 〈ax (x, t) p̂〉 ≈ −aξ (ξ(t), t)π(t) (50)

where we have used the fluctuation free representation at the rightmost term and the
subscript of a stands for the partial differentiation with respect to the variable sym-
bolized by that subscript. The function ξ(t) satisfies (44) after removing the index of
a1 there. The differentiation of both sides in (44) and (50) permits us to get a relation
between π and its first derivative and ξ and its second derivative. Thus we can under-
stand which kind of entity the momentum expectation is. The impression from the
expectation dynamical equations of quantum mechanics the operator a (̂x, t) seems
to play the role of the momentum in contrast to the operator p̂ when it has no time
dependence. Even in the case of time dependence it seems to be more attractive for the
utilization towards this end. Since we have proceeded parallel to quantum mechanical
issues, we have preferred to deliberately use the name “momentum operator” because
of the quantum dynamical impressions. However it seems more appropriate to call
it “Symmetrized Spatial Differential Operator”. We do not continue focusing on this
issue since our purpose here is rather to furnish mathematical structure.
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As we obtained (44) and (50) we can construct the expectation dynamical ODEs
by using commutator algebra and fluctuation free representation. However this is a
technical issue and not necessary to be described in detail here.

The Hamiltonian in (45) produces just a single ODE. However it is possible to
replace it with the following extended one to produce a set of ODEs

̂H(t) =
∑

j=1

1

2

{

a j (̂x1, . . . , x̂n, t) p̂ j + p̂ j a j (̂x1, . . . , x̂n, t)
}

(51)

where x̂s are independent variable operators while the p̂s are corresponding sym-
metrized differentiation operators. This Hamiltonian takes us to the following set of
ODEs

ξ̇ j (t) ≡ ˙〈

x̂ j
〉 = a j (ξ1(t), . . . , ξn(t), t) , j = 1, 2, . . . , n (52)

9 Constructing the probabilistic foundation for a dynamical system

Now we can itemize the steps for constructing a probabilistic foundation for a dynam-
ical system as follows

1. The dynamical system is represented by the ODEs and the accompanying bound-
ary conditions. These can be considered as (52) but with a set of initial values for
ξs;

2. If the given set of ODEs are not autonomus then, by defining a new unknown
ξn+1(t) ≡ t , the number of the equations and the initial conditions is increased by
1. Now all right hand side functions become explicitly dependent on ξn+1 instead
of t . This creates the autonomus structure and facilitates all the subsequent steps.
However it is not a necessity. Depending on the analytical demands the nonauton-
omous form may even be preferred;

3. ξs are considered as the expectation values of the algebraic operators separately
defined for each independent variable like x̂ j for x j . These may be called “Position
operators”;

4. We symbolize the j th symmetrized differentiation operator, which takes deriva-
tive with respect to x j and then multiples the result by −i, p̂ j by following the
quantum dynamical conceptuality. We removed the reduced Planck constant factor
since it does not appear explicitly in the Hamiltonian;

5. We consider the Hamiltonian given in (51) and use its wave function for the expec-
tations. However we never need the wave function explicitly. This does not mean
the wave functions remain arbitrary. It does satisfy

i∂ψ (x1, . . . , xn, t)∂t = ̂Hψ (x1, . . . , xn, t) (53)

where h̄ is removed since they cancel out with the h̄s of the p̂s when this equation
is written as an explicit PDE;

6. Equation (53) defines an evolution and the initial form of the wave function may
be temporally changing depending on the a functions. This makes the initial form
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quite important. First of all, it must be designed in such a way that the initial values
of each position must be equivalent to the imposed values as accompaniments to
the ODEs. The spread, the height and some other parameters of the initial wave
form must be compatible with the theoretical background of the dynamical system
model and must be consistent with the practical issues;

7. The Hamiltonian is expanded to powers of position operators. This enables us to
evaluate the previously defined H functions which become real values because of
the provided autonomous structure which makes the Hamiltonian time invariant;

8. The matrix C of the previous section or its upper leftmost truncations are evaluated;
9. By using the result of the previous item, the obtained linear set of ODEs over the

expectation of the basis operators of previous section is solved. Since the coeffi-
cient matrix is constant the ODE set can be even analytically solved. This infinite
linear vector differential equation comes from the probabilistic considerations.
Hence we can call it “Probabilistic Evolution Equation” of the dynamical system
under consideration. On the other hand, the same equation can also be considered
as an unfolded form of the ODEs characterizing the dynamical system since all
expectation powers are replaced by single expectations of appropriate powers;

10. The solution obtained in the previous item determines the expectations of the basis
operators at least approximately (for the truncated finite set case). This enables
us to determine the fluctuations. Since the fluctuations are basically affected by
uncertainties in the initial values they can be used to understand how the errors
propagate in time during the evolution of the dynamical system under consider-
ation.

10 Concluding remarks

This paper takes comprehensive look at earlier research [13] to show that it is possible
to construct a probabilistic wave evolution such that the expectations of a complete
operator basis set are evaluated by using the wave function of this evolution. The Ham-
iltonian of the evolution is determined such that the expectation dynamical equations
for the position operators give the dynamical system equations within the fluctuation
free representation limit. Hamiltonian is found to be rather simple and related to the
vector fields in fact. The infinite linear set of ODEs in the expectation dynamical equa-
tions can be analytically solved as long as the dynamical system under consideration
is autonomus. This is an important development since it takes us to the realm of linear
set of ODEs where a lot of tools in the linear vector space can be used. Especially
an efficient stability analysis can be developed through the spectral analysis of the
coefficient matrix of this ODE set.

The infinite number in the expectation dynamics may be considered awkward here.
We have used the powers of the x̂s and p̂s. This comes from an impression from the
Taylor or Maclaurin series and it is not mandatory to use this basis set. Any other
complete set of basis operators could have been proposed. The resulting expectation
dynamics would be again in infinite number. However depending on the commuta-
tion relations with the Hamiltonian the coefficient matrix may be in lumped or block
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structured form to facilitate the further analysis. In other words, the selection of the
basis set operators is an important issue. It is worthy studying.

The word “Hamiltonian” have been used because of the impressions from quantum
mechanics. There is no direct analogy to mechanical concepts unless some limitations
related to p̂ are considered. The evolution operator is more meaningful.

The basis set can be squeezed by discarding all elements containing p̂ since there
is no natural role of this operator in formulae except in the structure of the evolution
operator. It vanishes from the expectation equations unless we want to add the terms
containing this operator. The situation is much simpler than we thought.

As it was shown in some papers [14,15] of the first author it is possible to convert
an ODE set, even when it is nonlinear, to set of quadratic ODEs as long as certain
closedness conditions like the one under the gradient are fulfilled by the a functions.
This makes it attractive to deal with quadratic ODE sets in the framework of this paper.

It is possible to convert the infinite linear equations (probabilistic evolution equa-
tion) to an infinite matrix ODE whose solution is initialized by the unit operator. In
other words, the propagator concept may separate the initial conditions.

As we have mentioned, the probabilistic evolution equation is in fact composed of
folvecs (folded vectors) and folmats (folded matrices). Although we have preferred to
unfold all these entities to be able to use ordinary linear algebraic concepts, it is also
possible to directly deal with these folarrs (folded arrays). Especially some decompo-
sition methods [16–22] like the Singular Value Decomposition [23–39] can be used
to facilitate the employment of these entities.

Here we get first degree p̂ dependence in ̂H to get dynamical equations in ẋ(t) =
a (x(t)) form. If we would take this dependence second degree then we would get
dynamical equations in ẍ(t) = a (x(t)) form as we get in quantum dynamics. The
higher p̂ dependence in ̂H , the higher differentiation order in the resulting ODE set
form.

The companion of this paper will be on the phenomenological reasoning of the
probabilistic approach proposed here as well as certain application possibilities on
dynamical causal modelling in neuroscience.
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